Transcriptional activity of the homopurine-homopyrimidine repeat of the c-Ki-ras promoter is independent of its H-forming potential.

نویسندگان

  • G Raghu
  • S Tevosian
  • S Anant
  • K N Subramanian
  • D L George
  • S M Mirkin
چکیده

The mouse c-Ki-ras protooncogene promoter contains an unusual DNA element consisting of a 27 bp-long homopurine-homopyrimidine mirror repeat (H-motif) adjacent to a d(C-G)5 repeat. We have previously shown that in vitro these repeats may adopt H and Z conformations, respectively, causing nuclease and chemical hypersensitivity. Here we have studied the functional role of these DNA stretches using fine deletion analysis of the promoter and a transient transcription assay in vivo. We found that while the H-motif is responsible for approximately half of the promoter activity in both mouse and human cell lines, the Z-forming sequence exhibits little, if any, such activity. Mutational changes introduced within the homopurine-homopyrimidine stretch showed that its sequence integrity, rather than its H-forming potential, is responsible for its effect on transcription. Electrophoretic mobility shift assays revealed that the putative H-motif tightly binds several nuclear proteins, one of which is likely to be transcription factor Sp1, as determined by competition experiments. Southwestern hybridization studies detected two major proteins specifically binding to the H-motif: a 97 kD protein which presumably corresponds to Sp1 and another protein of 60 kD in human and 64 kD in mouse cells. We conclude that the homopurine-homopyrimidine stretch is required for full transcriptional activity of the c-Ki-ras promoter and at least two distinct factors, Sp1 and an unidentified protein, potentially contribute to the positive effect on transcription.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H-DNA and Z-DNA in the mouse c-Ki-ras promoter.

The mouse c-Ki-ras protooncogene promoter contains a homopurine-homopyrimidine domain that exhibits S1 nuclease sensitivity in vitro. We have studied the structure of this DNA region in a supercoiled state using a number of chemical probes for non-B DNA conformations including diethyl pyrocarbonate, osmium tetroxide, chloroacetaldehyde, and dimethyl sulfate. The results demonstrate that two typ...

متن کامل

P-70: Study of GTn-Repeat Expansion in Heme Oxygenase-1 Gene Promoter As Genetic Cause of Male Infertility

Background: The length of GT-repeats polymorphic region in the promoter of human Heme oxygenase-1 gene (HO-1) alters the level of its transcriptional activity in response to oxidative stresses. Decreased level of HO-1 protein in the seminal plasma has been reported to be associated with oligospermia and azoospermia in male infertility. This is the first study to investigate the association betw...

متن کامل

Triplex targeting of human PDGF-B (c-sis, proto-oncogene) promoter specifically inhibits factors binding and PDGF-B transcription.

Human c-sis/PDGF-B proto-oncogene has been shown to be overexpressed in a large percentage of human tumor cells establishing a growth-promoting, autocrine growth circuit. Triplex forming oligonucleotides (TFOs) can recognize and bind sequences in duplex DNA, and have received considerable attention because of their potential for targeting specific genomic sites. The c-sis/PDGF-B promoter contai...

متن کامل

Colony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity

Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...

متن کامل

Sequence-specific cleavage of double helical DNA by triple helix formation.

Homopyrimidine oligodeoxyribonucleotides with EDTA-Fe attached at a single position bind the corresponding homopyrimidine-homopurine tracts within large double-stranded DNA by triple helix formation and cleave at that site. Oligonucleotides with EDTA.Fe at the 5' end cause a sequence specific double strand break. The location and asymmetry of the cleavage pattern reveal that the homopyrimidine-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 16  شماره 

صفحات  -

تاریخ انتشار 1994